internlm2.5-chat-1m#
Context Length: 262144
Model Name: internlm2.5-chat-1m
Languages: en, zh
Abilities: chat
Description: InternLM2.5 series of the InternLM model supports 1M long-context
Specifications#
Model Spec 1 (pytorch, 7 Billion)#
Model Format: pytorch
Model Size (in billions): 7
Quantizations: none
Engines: vLLM, Transformers
Model ID: internlm/internlm2_5-7b-chat-1m
Model Hubs: Hugging Face, ModelScope
Execute the following command to launch the model, remember to replace ${quantization}
with your
chosen quantization method from the options listed above:
xinference launch --model-engine ${engine} --model-name internlm2.5-chat-1m --size-in-billions 7 --model-format pytorch --quantization ${quantization}
Model Spec 2 (gptq, 7 Billion)#
Model Format: gptq
Model Size (in billions): 7
Quantizations: Int4
Engines: vLLM, Transformers
Model ID: ModelCloud/internlm-2.5-7b-chat-1m-gptq-4bit
Model Hubs: Hugging Face
Execute the following command to launch the model, remember to replace ${quantization}
with your
chosen quantization method from the options listed above:
xinference launch --model-engine ${engine} --model-name internlm2.5-chat-1m --size-in-billions 7 --model-format gptq --quantization ${quantization}
Model Spec 3 (ggufv2, 7 Billion)#
Model Format: ggufv2
Model Size (in billions): 7
Quantizations: q2_k, q3_k_m, q4_0, q4_k_m, q5_0, q5_k_m, q6_k, q8_0, fp16
Engines: llama.cpp
Model ID: internlm/internlm2_5-7b-chat-1m-gguf
Model Hubs: Hugging Face
Execute the following command to launch the model, remember to replace ${quantization}
with your
chosen quantization method from the options listed above:
xinference launch --model-engine ${engine} --model-name internlm2.5-chat-1m --size-in-billions 7 --model-format ggufv2 --quantization ${quantization}