llama-2-chat#
Context Length: 4096
Model Name: llama-2-chat
Languages: en
Abilities: chat
Description: Llama-2-Chat is a fine-tuned version of the Llama-2 LLM, specializing in chatting.
Specifications#
Model Spec 1 (ggufv2, 7 Billion)#
Model Format: ggufv2
Model Size (in billions): 7
Quantizations: Q2_K, Q3_K_S, Q3_K_M, Q3_K_L, Q4_0, Q4_K_S, Q4_K_M, Q5_0, Q5_K_S, Q5_K_M, Q6_K, Q8_0
Engines: llama.cpp
Model ID: TheBloke/Llama-2-7B-Chat-GGUF
Model Hubs: Hugging Face, ModelScope
Execute the following command to launch the model, remember to replace ${quantization}
with your
chosen quantization method from the options listed above:
xinference launch --model-engine ${engine} --model-name llama-2-chat --size-in-billions 7 --model-format ggufv2 --quantization ${quantization}
Model Spec 2 (ggufv2, 13 Billion)#
Model Format: ggufv2
Model Size (in billions): 13
Quantizations: Q2_K, Q3_K_S, Q3_K_M, Q3_K_L, Q4_0, Q4_K_S, Q4_K_M, Q5_0, Q5_K_S, Q5_K_M, Q6_K, Q8_0
Engines: llama.cpp
Model ID: TheBloke/Llama-2-13B-chat-GGUF
Model Hubs: Hugging Face, ModelScope
Execute the following command to launch the model, remember to replace ${quantization}
with your
chosen quantization method from the options listed above:
xinference launch --model-engine ${engine} --model-name llama-2-chat --size-in-billions 13 --model-format ggufv2 --quantization ${quantization}
Model Spec 3 (ggufv2, 70 Billion)#
Model Format: ggufv2
Model Size (in billions): 70
Quantizations: Q2_K, Q3_K_S, Q3_K_M, Q3_K_L, Q4_0, Q4_K_S, Q4_K_M, Q5_0, Q5_K_S, Q5_K_M
Engines: llama.cpp
Model ID: TheBloke/Llama-2-70B-Chat-GGUF
Model Hubs: Hugging Face
Execute the following command to launch the model, remember to replace ${quantization}
with your
chosen quantization method from the options listed above:
xinference launch --model-engine ${engine} --model-name llama-2-chat --size-in-billions 70 --model-format ggufv2 --quantization ${quantization}
Model Spec 4 (pytorch, 7 Billion)#
Model Format: pytorch
Model Size (in billions): 7
Quantizations: 4-bit, 8-bit, none
Engines: vLLM, Transformers, SGLang (vLLM and SGLang only available for quantization none)
Model ID: meta-llama/Llama-2-7b-chat-hf
Model Hubs: Hugging Face, ModelScope
Execute the following command to launch the model, remember to replace ${quantization}
with your
chosen quantization method from the options listed above:
xinference launch --model-engine ${engine} --model-name llama-2-chat --size-in-billions 7 --model-format pytorch --quantization ${quantization}
Model Spec 5 (gptq, 7 Billion)#
Model Format: gptq
Model Size (in billions): 7
Quantizations: Int4
Engines: vLLM, Transformers, SGLang
Model ID: TheBloke/Llama-2-7B-Chat-GPTQ
Model Hubs: Hugging Face
Execute the following command to launch the model, remember to replace ${quantization}
with your
chosen quantization method from the options listed above:
xinference launch --model-engine ${engine} --model-name llama-2-chat --size-in-billions 7 --model-format gptq --quantization ${quantization}
Model Spec 6 (gptq, 70 Billion)#
Model Format: gptq
Model Size (in billions): 70
Quantizations: Int4
Engines: vLLM, Transformers, SGLang
Model ID: TheBloke/Llama-2-70B-Chat-GPTQ
Model Hubs: Hugging Face
Execute the following command to launch the model, remember to replace ${quantization}
with your
chosen quantization method from the options listed above:
xinference launch --model-engine ${engine} --model-name llama-2-chat --size-in-billions 70 --model-format gptq --quantization ${quantization}
Model Spec 7 (awq, 70 Billion)#
Model Format: awq
Model Size (in billions): 70
Quantizations: Int4
Engines: vLLM, Transformers, SGLang
Model ID: TheBloke/Llama-2-70B-Chat-AWQ
Model Hubs: Hugging Face
Execute the following command to launch the model, remember to replace ${quantization}
with your
chosen quantization method from the options listed above:
xinference launch --model-engine ${engine} --model-name llama-2-chat --size-in-billions 70 --model-format awq --quantization ${quantization}
Model Spec 8 (awq, 7 Billion)#
Model Format: awq
Model Size (in billions): 7
Quantizations: Int4
Engines: vLLM, Transformers, SGLang
Model ID: TheBloke/Llama-2-7B-Chat-AWQ
Model Hubs: Hugging Face
Execute the following command to launch the model, remember to replace ${quantization}
with your
chosen quantization method from the options listed above:
xinference launch --model-engine ${engine} --model-name llama-2-chat --size-in-billions 7 --model-format awq --quantization ${quantization}
Model Spec 9 (pytorch, 13 Billion)#
Model Format: pytorch
Model Size (in billions): 13
Quantizations: 4-bit, 8-bit, none
Engines: vLLM, Transformers, SGLang (vLLM and SGLang only available for quantization none)
Model ID: meta-llama/Llama-2-13b-chat-hf
Model Hubs: Hugging Face, ModelScope
Execute the following command to launch the model, remember to replace ${quantization}
with your
chosen quantization method from the options listed above:
xinference launch --model-engine ${engine} --model-name llama-2-chat --size-in-billions 13 --model-format pytorch --quantization ${quantization}
Model Spec 10 (gptq, 13 Billion)#
Model Format: gptq
Model Size (in billions): 13
Quantizations: Int4
Engines: vLLM, Transformers, SGLang
Model ID: TheBloke/Llama-2-13B-chat-GPTQ
Model Hubs: Hugging Face
Execute the following command to launch the model, remember to replace ${quantization}
with your
chosen quantization method from the options listed above:
xinference launch --model-engine ${engine} --model-name llama-2-chat --size-in-billions 13 --model-format gptq --quantization ${quantization}
Model Spec 11 (awq, 13 Billion)#
Model Format: awq
Model Size (in billions): 13
Quantizations: Int4
Engines: vLLM, Transformers, SGLang
Model ID: TheBloke/Llama-2-13B-chat-AWQ
Model Hubs: Hugging Face
Execute the following command to launch the model, remember to replace ${quantization}
with your
chosen quantization method from the options listed above:
xinference launch --model-engine ${engine} --model-name llama-2-chat --size-in-billions 13 --model-format awq --quantization ${quantization}
Model Spec 12 (pytorch, 70 Billion)#
Model Format: pytorch
Model Size (in billions): 70
Quantizations: 4-bit, 8-bit, none
Engines: vLLM, Transformers, SGLang (vLLM and SGLang only available for quantization none)
Model ID: meta-llama/Llama-2-70b-chat-hf
Model Hubs: Hugging Face, ModelScope
Execute the following command to launch the model, remember to replace ${quantization}
with your
chosen quantization method from the options listed above:
xinference launch --model-engine ${engine} --model-name llama-2-chat --size-in-billions 70 --model-format pytorch --quantization ${quantization}