mixtral-v0.1#
Context Length: 32768
Model Name: mixtral-v0.1
Languages: en, fr, it, de, es
Abilities: generate
Description: The Mixtral-8x7B Large Language Model (LLM) is a pretrained generative Sparse Mixture of Experts.
Specifications#
Model Spec 1 (pytorch, 46_7 Billion)#
Model Format: pytorch
Model Size (in billions): 46_7
Quantizations: 4-bit, 8-bit, none
Engines: Transformers, SGLang (vLLM and SGLang only available for quantization none)
Model ID: mistralai/Mixtral-8x7B-v0.1
Model Hubs: Hugging Face, ModelScope
Execute the following command to launch the model, remember to replace ${quantization}
with your
chosen quantization method from the options listed above:
xinference launch --model-engine ${engine} --model-name mixtral-v0.1 --size-in-billions 46_7 --model-format pytorch --quantization ${quantization}
Model Spec 2 (gptq, 46_7 Billion)#
Model Format: gptq
Model Size (in billions): 46_7
Quantizations: Int4
Engines: Transformers, SGLang
Model ID: TheBloke/Mixtral-8x7B-v0.1-GPTQ
Model Hubs: Hugging Face
Execute the following command to launch the model, remember to replace ${quantization}
with your
chosen quantization method from the options listed above:
xinference launch --model-engine ${engine} --model-name mixtral-v0.1 --size-in-billions 46_7 --model-format gptq --quantization ${quantization}
Model Spec 3 (ggufv2, 46_7 Billion)#
Model Format: ggufv2
Model Size (in billions): 46_7
Quantizations: Q2_K, Q3_K_M, Q4_0, Q4_K_M, Q5_0, Q5_K_M, Q6_K, Q8_0
Engines: llama.cpp
Model ID: TheBloke/Mixtral-8x7B-v0.1-GGUF
Model Hubs: Hugging Face
Execute the following command to launch the model, remember to replace ${quantization}
with your
chosen quantization method from the options listed above:
xinference launch --model-engine ${engine} --model-name mixtral-v0.1 --size-in-billions 46_7 --model-format ggufv2 --quantization ${quantization}