Images#

Learn how to generate images with Xinference.

Introduction#

The Images API provides two methods for interacting with images:

  • The Text-to-image endpoint create images from scratch based on a text prompt.

  • The Image-to-image endpoint allows you to generate a variation of a given image.

API ENDPOINT

OpenAI-compatible ENDPOINT

Text-to-Image API

/v1/images/generations

Image-to-image API

/v1/images/variations

Supported models#

The Text-to-image API is supported with the following models in Xinference:

  • sd-turbo

  • sdxl-turbo

  • stable-diffusion-v1.5

  • stable-diffusion-xl-base-1.0

  • sd3-medium

  • sd3.5-medium

  • sd3.5-large

  • sd3.5-large-turbo

  • FLUX.1-schnell

  • FLUX.1-dev

Quickstart#

Text-to-image#

The Text-to-image API mimics OpenAI’s create images API. We can try Text-to-image API out either via cURL, OpenAI Client, or Xinference’s python client:

curl -X 'POST' \
  'http://<XINFERENCE_HOST>:<XINFERENCE_PORT>/v1/images/generations' \
  -H 'accept: application/json' \
  -H 'Content-Type: application/json' \
  -d '{
    "model": "<MODEL_UID>",
    "prompt": "an apple",
  }'

Quantize Large Image Models e.g. SD3-Medium, FLUX.1#

Note

From v0.16.1, Xinference by default enabled quantization for large image models like Flux.1 and SD3.5 series. So if your Xinference version is newer than v0.16.1, You barely need to do anything to run those large image models on GPUs with small memory.

Useful extra parameters can be passed to launch including:

  • --cpu_offload True: specifying True will offload the components of the model to CPU during inference in order to save memory, while seeing a slight increase in inference latency. Model offloading will only move a model component onto the GPU when it needs to be executed, while keeping the remaining components on the CPU.

  • --quantize_text_encoder <text encoder layer>: We leveraged the bitsandbytes library to load and quantize the T5-XXL text encoder to 8-bit precision. This allows you to keep using all text encoders while only slightly impacting performance.

  • --text_encoder_3 None, for sd3-medium, removing the memory-intensive 4.7B parameter T5-XXL text encoder during inference can significantly decrease the memory requirements with only a slight loss in performance.

  • --transformer_nf4 True: use nf4 for transformer quantization.

  • --quantize: Only work for MLX on Mac, Flux.1-dev and Flux.1-schnell will switch to MLX engine on Mac, and quantize can be used to quantize the model.

For WebUI, Just add additional parameters, e.g. add key cpu_offload and value True to enable cpu offloading.

Below list default options that used from v0.16.1.

Model

quantize_text_encoder

quantize

transformer_nf4

FLUX.1-dev

text_encoder_2

True

False

FLUX.1-schnell

text_encoder_2

True

False

sd3-medium

text_encoder_3

N/A

False

sd3.5-medium

text_encoder_3

N/A

False

sd3.5-large

text_encoder_3

N/A

True

sd3.5-large-turbo

text_encoder_3

N/A

True

Note

If you want to disable some quantization, just set the corresponding option to False. e.g. for Web UI, set key quantize_text_encoder and value False and for command line, specify --quantize_text_encoder False to disable quantization for text encoder.

GGUF file format#

GGUF file format for transformer provides various quantization options. To use gguf file, you can specify additional option gguf_quantization for web UI, or --gguf_quantization for command line for those image models which support internally by Xinference. Below is the mode list.

Model

supported gguf quantization

FLUX.1-dev

F16, Q2_K, Q3_K_S, Q4_0, Q4_1, Q4_K_S, Q5_0, Q5_1, Q5_K_S, Q6_K, Q8_0

FLUX.1-schnell

F16, Q2_K, Q3_K_S, Q4_0, Q4_1, Q4_K_S, Q5_0, Q5_1, Q5_K_S, Q6_K, Q8_0

sd3.5-medium

F16, Q3_K_M, Q3_K_S, Q4_0, Q4_1, Q4_K_M, Q4_K_S, Q5_0, Q5_1, Q5_K_M, Q5_K_S, Q6_K, Q8_0

sd3.5-large

F16, Q4_0, Q4_1, Q5_0, Q5_1, Q8_0

sd3.5-large-turbo

F16, Q4_0, Q4_1, Q5_0, Q5_1, Q8_0

Note

We stronly recommend to enable additional option cpu_offload with value True for WebUI, or specify --cpu_offload True for command line.

Example:

xinference launch --model-name FLUX.1-dev --model-type image --gguf_quantization Q2_K --cpu_offload True

With Q2_K quantization, you only need around 5 GiB GPU memory to run Flux.1-dev.

For those models gguf options are not supported internally, or you want to download gguf files on you own, you can specify additional option gguf_model_path for web UI or spcecify --gguf_model_path /path/to/model_quant.gguf for command line.

Image-to-image#

You can find more examples of Images API in the tutorial notebook:

Stable Diffusion ControlNet

Learn from a Stable Diffusion ControlNet example

https://github.com/xorbitsai/inference/blob/main/examples/StableDiffusionControlNet.ipynb

OCR#

The OCR API accepts image bytes and returns the OCR text.

We can try OCR API out either via cURL, or Xinference’s python client:

curl -X 'POST' \
  'http://<XINFERENCE_HOST>:<XINFERENCE_PORT>/v1/images/ocr' \
  -F model=<MODEL_UID> \
  -F image=@xxx.jpg