gemma-3-it#
Context Length: 131072
Model Name: gemma-3-it
Languages: en
Abilities: chat, vision
Description: Gemma is a family of lightweight, state-of-the-art open models from Google, built from the same research and technology used to create the Gemini models.
Specifications#
Model Spec 1 (pytorch, 4 Billion)#
Model Format: pytorch
Model Size (in billions): 4
Quantizations: none
Engines: vLLM, Transformers, SGLang
Model ID: google/gemma-3-4b-it
Model Hubs: Hugging Face, ModelScope
Execute the following command to launch the model, remember to replace ${quantization}
with your
chosen quantization method from the options listed above:
xinference launch --model-engine ${engine} --model-name gemma-3-it --size-in-billions 4 --model-format pytorch --quantization ${quantization}
Model Spec 2 (pytorch, 12 Billion)#
Model Format: pytorch
Model Size (in billions): 12
Quantizations: none
Engines: vLLM, Transformers, SGLang
Model ID: google/gemma-3-12b-it
Model Hubs: Hugging Face, ModelScope
Execute the following command to launch the model, remember to replace ${quantization}
with your
chosen quantization method from the options listed above:
xinference launch --model-engine ${engine} --model-name gemma-3-it --size-in-billions 12 --model-format pytorch --quantization ${quantization}
Model Spec 3 (pytorch, 27 Billion)#
Model Format: pytorch
Model Size (in billions): 27
Quantizations: none
Engines: vLLM, Transformers, SGLang
Model ID: google/gemma-3-27b-it
Model Hubs: Hugging Face, ModelScope
Execute the following command to launch the model, remember to replace ${quantization}
with your
chosen quantization method from the options listed above:
xinference launch --model-engine ${engine} --model-name gemma-3-it --size-in-billions 27 --model-format pytorch --quantization ${quantization}
Model Spec 4 (ggufv2, 4 Billion)#
Model Format: ggufv2
Model Size (in billions): 4
Quantizations: IQ2_M, IQ3_M, IQ3_XS, IQ3_XXS, IQ4_NL, IQ4_XS, Q2_K, Q2_K_L, Q3_K_L, Q3_K_M, Q3_K_S, Q4_0, Q4_1, Q4_K_L, Q4_K_M, Q4_K_S, Q5_K_L, Q5_K_M, Q5_K_S, Q6_K, Q6_K_L, Q8_0, bf16
Engines: llama.cpp
Model ID: bartowski/google_gemma-3-4b-it-GGUF
Model Hubs: Hugging Face, ModelScope
Execute the following command to launch the model, remember to replace ${quantization}
with your
chosen quantization method from the options listed above:
xinference launch --model-engine ${engine} --model-name gemma-3-it --size-in-billions 4 --model-format ggufv2 --quantization ${quantization}
Model Spec 5 (ggufv2, 12 Billion)#
Model Format: ggufv2
Model Size (in billions): 12
Quantizations: IQ2_M, IQ3_M, IQ3_XS, IQ3_XXS, IQ4_NL, IQ4_XS, Q2_K, Q2_K_L, Q3_K_L, Q3_K_M, Q3_K_S, Q4_0, Q4_1, Q4_K_L, Q4_K_M, Q4_K_S, Q5_K_L, Q5_K_M, Q5_K_S, Q6_K, Q6_K_L, Q8_0, bf16
Engines: llama.cpp
Model ID: bartowski/google_gemma-3-12b-it-GGUF
Model Hubs: Hugging Face, ModelScope
Execute the following command to launch the model, remember to replace ${quantization}
with your
chosen quantization method from the options listed above:
xinference launch --model-engine ${engine} --model-name gemma-3-it --size-in-billions 12 --model-format ggufv2 --quantization ${quantization}
Model Spec 6 (ggufv2, 27 Billion)#
Model Format: ggufv2
Model Size (in billions): 27
Quantizations: IQ2_M, IQ3_M, IQ3_XS, IQ3_XXS, IQ4_NL, IQ4_XS, Q2_K, Q2_K_L, Q3_K_L, Q3_K_M, Q3_K_S, Q4_0, Q4_1, Q4_K_L, Q4_K_M, Q4_K_S, Q5_K_L, Q5_K_M, Q5_K_S, Q6_K, Q6_K_L, Q8_0, bf16
Engines: llama.cpp
Model ID: bartowski/google_gemma-3-27b-it-GGUF
Model Hubs: Hugging Face, ModelScope
Execute the following command to launch the model, remember to replace ${quantization}
with your
chosen quantization method from the options listed above:
xinference launch --model-engine ${engine} --model-name gemma-3-it --size-in-billions 27 --model-format ggufv2 --quantization ${quantization}
Model Spec 7 (mlx, 4 Billion)#
Model Format: mlx
Model Size (in billions): 4
Quantizations: 4bit, 6bit, 8bit, fp16
Engines: MLX
Model ID: mlx-community/gemma-3-4b-it-{quantization}
Model Hubs: Hugging Face, ModelScope
Execute the following command to launch the model, remember to replace ${quantization}
with your
chosen quantization method from the options listed above:
xinference launch --model-engine ${engine} --model-name gemma-3-it --size-in-billions 4 --model-format mlx --quantization ${quantization}
Model Spec 8 (mlx, 12 Billion)#
Model Format: mlx
Model Size (in billions): 12
Quantizations: 4bit, 6bit, 8bit, fp16
Engines: MLX
Model ID: mlx-community/gemma-3-12b-it-{quantization}
Model Hubs: Hugging Face, ModelScope
Execute the following command to launch the model, remember to replace ${quantization}
with your
chosen quantization method from the options listed above:
xinference launch --model-engine ${engine} --model-name gemma-3-it --size-in-billions 12 --model-format mlx --quantization ${quantization}
Model Spec 9 (mlx, 27 Billion)#
Model Format: mlx
Model Size (in billions): 27
Quantizations: 4bit, 6bit, 8bit, fp16
Engines: MLX
Model ID: mlx-community/gemma-3-27b-it-{quantization}
Model Hubs: Hugging Face, ModelScope
Execute the following command to launch the model, remember to replace ${quantization}
with your
chosen quantization method from the options listed above:
xinference launch --model-engine ${engine} --model-name gemma-3-it --size-in-billions 27 --model-format mlx --quantization ${quantization}