llama-3.1-instruct#
Context Length: 131072
Model Name: llama-3.1-instruct
Languages: en, de, fr, it, pt, hi, es, th
Abilities: chat, tools
Description: The Llama 3.1 instruction tuned models are optimized for dialogue use cases and outperform many of the available open source chat models on common industry benchmarks..
Specifications#
Model Spec 1 (ggufv2, 8 Billion)#
Model Format: ggufv2
Model Size (in billions): 8
Quantizations: Q3_K_L, IQ4_XS, Q4_K_M, Q5_K_M, Q6_K, Q8_0
Engines: llama.cpp
Model ID: lmstudio-community/Meta-Llama-3.1-8B-Instruct-GGUF
Model Hubs: Hugging Face, ModelScope
Execute the following command to launch the model, remember to replace ${quantization}
with your
chosen quantization method from the options listed above:
xinference launch --model-engine ${engine} --model-name llama-3.1-instruct --size-in-billions 8 --model-format ggufv2 --quantization ${quantization}
Model Spec 2 (pytorch, 8 Billion)#
Model Format: pytorch
Model Size (in billions): 8
Quantizations: none
Engines: vLLM, Transformers, SGLang
Model ID: meta-llama/Meta-Llama-3.1-8B-Instruct
Model Hubs: Hugging Face, ModelScope
Execute the following command to launch the model, remember to replace ${quantization}
with your
chosen quantization method from the options listed above:
xinference launch --model-engine ${engine} --model-name llama-3.1-instruct --size-in-billions 8 --model-format pytorch --quantization ${quantization}
Model Spec 3 (pytorch, 8 Billion)#
Model Format: pytorch
Model Size (in billions): 8
Quantizations: 4-bit
Engines: Transformers
Model ID: unsloth/Meta-Llama-3.1-8B-Instruct-bnb-4bit
Model Hubs: Hugging Face, ModelScope
Execute the following command to launch the model, remember to replace ${quantization}
with your
chosen quantization method from the options listed above:
xinference launch --model-engine ${engine} --model-name llama-3.1-instruct --size-in-billions 8 --model-format pytorch --quantization ${quantization}
Model Spec 4 (gptq, 8 Billion)#
Model Format: gptq
Model Size (in billions): 8
Quantizations: Int4
Engines: vLLM, Transformers, SGLang
Model ID: hugging-quants/Meta-Llama-3.1-8B-Instruct-GPTQ-INT4
Model Hubs: Hugging Face, ModelScope
Execute the following command to launch the model, remember to replace ${quantization}
with your
chosen quantization method from the options listed above:
xinference launch --model-engine ${engine} --model-name llama-3.1-instruct --size-in-billions 8 --model-format gptq --quantization ${quantization}
Model Spec 5 (awq, 8 Billion)#
Model Format: awq
Model Size (in billions): 8
Quantizations: Int4
Engines: vLLM, Transformers, SGLang
Model ID: hugging-quants/Meta-Llama-3.1-8B-Instruct-AWQ-INT4
Model Hubs: Hugging Face, ModelScope
Execute the following command to launch the model, remember to replace ${quantization}
with your
chosen quantization method from the options listed above:
xinference launch --model-engine ${engine} --model-name llama-3.1-instruct --size-in-billions 8 --model-format awq --quantization ${quantization}
Model Spec 6 (ggufv2, 70 Billion)#
Model Format: ggufv2
Model Size (in billions): 70
Quantizations: IQ2_M, IQ4_XS, Q2_K, Q3_K_S, Q4_K_M, Q5_K_M, Q6_K, Q8_0
Engines: llama.cpp
Model ID: lmstudio-community/Meta-Llama-3.1-70B-Instruct-GGUF
Model Hubs: Hugging Face
Execute the following command to launch the model, remember to replace ${quantization}
with your
chosen quantization method from the options listed above:
xinference launch --model-engine ${engine} --model-name llama-3.1-instruct --size-in-billions 70 --model-format ggufv2 --quantization ${quantization}
Model Spec 7 (pytorch, 70 Billion)#
Model Format: pytorch
Model Size (in billions): 70
Quantizations: none
Engines: vLLM, Transformers, SGLang
Model ID: meta-llama/Meta-Llama-3.1-70B-Instruct
Model Hubs: Hugging Face, ModelScope
Execute the following command to launch the model, remember to replace ${quantization}
with your
chosen quantization method from the options listed above:
xinference launch --model-engine ${engine} --model-name llama-3.1-instruct --size-in-billions 70 --model-format pytorch --quantization ${quantization}
Model Spec 8 (pytorch, 70 Billion)#
Model Format: pytorch
Model Size (in billions): 70
Quantizations: 4-bit
Engines: Transformers
Model ID: unsloth/Meta-Llama-3.1-70B-Instruct-bnb-4bit
Model Hubs: Hugging Face, ModelScope
Execute the following command to launch the model, remember to replace ${quantization}
with your
chosen quantization method from the options listed above:
xinference launch --model-engine ${engine} --model-name llama-3.1-instruct --size-in-billions 70 --model-format pytorch --quantization ${quantization}
Model Spec 9 (gptq, 70 Billion)#
Model Format: gptq
Model Size (in billions): 70
Quantizations: Int4
Engines: vLLM, Transformers, SGLang
Model ID: hugging-quants/Meta-Llama-3.1-70B-Instruct-GPTQ-INT4
Model Hubs: Hugging Face, ModelScope
Execute the following command to launch the model, remember to replace ${quantization}
with your
chosen quantization method from the options listed above:
xinference launch --model-engine ${engine} --model-name llama-3.1-instruct --size-in-billions 70 --model-format gptq --quantization ${quantization}
Model Spec 10 (awq, 70 Billion)#
Model Format: awq
Model Size (in billions): 70
Quantizations: Int4
Engines: vLLM, Transformers, SGLang
Model ID: hugging-quants/Meta-Llama-3.1-70B-Instruct-AWQ-INT4
Model Hubs: Hugging Face, ModelScope
Execute the following command to launch the model, remember to replace ${quantization}
with your
chosen quantization method from the options listed above:
xinference launch --model-engine ${engine} --model-name llama-3.1-instruct --size-in-billions 70 --model-format awq --quantization ${quantization}
Model Spec 11 (mlx, 8 Billion)#
Model Format: mlx
Model Size (in billions): 8
Quantizations: 4-bit
Engines: MLX
Model ID: mlx-community/Meta-Llama-3.1-8B-Instruct-4bit
Model Hubs: Hugging Face
Execute the following command to launch the model, remember to replace ${quantization}
with your
chosen quantization method from the options listed above:
xinference launch --model-engine ${engine} --model-name llama-3.1-instruct --size-in-billions 8 --model-format mlx --quantization ${quantization}
Model Spec 12 (mlx, 8 Billion)#
Model Format: mlx
Model Size (in billions): 8
Quantizations: 8-bit
Engines: MLX
Model ID: mlx-community/Meta-Llama-3.1-8B-Instruct-8bit
Model Hubs: Hugging Face
Execute the following command to launch the model, remember to replace ${quantization}
with your
chosen quantization method from the options listed above:
xinference launch --model-engine ${engine} --model-name llama-3.1-instruct --size-in-billions 8 --model-format mlx --quantization ${quantization}
Model Spec 13 (mlx, 8 Billion)#
Model Format: mlx
Model Size (in billions): 8
Quantizations: none
Engines: MLX
Model ID: mlx-community/Meta-Llama-3.1-8B-Instruct
Model Hubs: Hugging Face
Execute the following command to launch the model, remember to replace ${quantization}
with your
chosen quantization method from the options listed above:
xinference launch --model-engine ${engine} --model-name llama-3.1-instruct --size-in-billions 8 --model-format mlx --quantization ${quantization}
Model Spec 14 (mlx, 70 Billion)#
Model Format: mlx
Model Size (in billions): 70
Quantizations: 4-bit
Engines: MLX
Model ID: mlx-community/Meta-Llama-3.1-70B-Instruct-4bit
Model Hubs: Hugging Face
Execute the following command to launch the model, remember to replace ${quantization}
with your
chosen quantization method from the options listed above:
xinference launch --model-engine ${engine} --model-name llama-3.1-instruct --size-in-billions 70 --model-format mlx --quantization ${quantization}
Model Spec 15 (mlx, 70 Billion)#
Model Format: mlx
Model Size (in billions): 70
Quantizations: 8-bit
Engines: MLX
Model ID: mlx-community/Meta-Llama-3.1-70B-Instruct-8bit
Model Hubs: Hugging Face
Execute the following command to launch the model, remember to replace ${quantization}
with your
chosen quantization method from the options listed above:
xinference launch --model-engine ${engine} --model-name llama-3.1-instruct --size-in-billions 70 --model-format mlx --quantization ${quantization}
Model Spec 16 (mlx, 70 Billion)#
Model Format: mlx
Model Size (in billions): 70
Quantizations: none
Engines: MLX
Model ID: mlx-community/Meta-Llama-3.1-70B-Instruct-bf16
Model Hubs: Hugging Face
Execute the following command to launch the model, remember to replace ${quantization}
with your
chosen quantization method from the options listed above:
xinference launch --model-engine ${engine} --model-name llama-3.1-instruct --size-in-billions 70 --model-format mlx --quantization ${quantization}
Model Spec 17 (pytorch, 405 Billion)#
Model Format: pytorch
Model Size (in billions): 405
Quantizations: 4-bit, 8-bit, none
Engines: vLLM, Transformers, SGLang (vLLM and SGLang only available for quantization none)
Model ID: meta-llama/Meta-Llama-3.1-405B-Instruct
Model Hubs: Hugging Face, ModelScope
Execute the following command to launch the model, remember to replace ${quantization}
with your
chosen quantization method from the options listed above:
xinference launch --model-engine ${engine} --model-name llama-3.1-instruct --size-in-billions 405 --model-format pytorch --quantization ${quantization}
Model Spec 18 (gptq, 405 Billion)#
Model Format: gptq
Model Size (in billions): 405
Quantizations: Int4
Engines: vLLM, Transformers, SGLang
Model ID: hugging-quants/Meta-Llama-3.1-405B-Instruct-GPTQ-INT4
Model Hubs: Hugging Face, ModelScope
Execute the following command to launch the model, remember to replace ${quantization}
with your
chosen quantization method from the options listed above:
xinference launch --model-engine ${engine} --model-name llama-3.1-instruct --size-in-billions 405 --model-format gptq --quantization ${quantization}
Model Spec 19 (awq, 405 Billion)#
Model Format: awq
Model Size (in billions): 405
Quantizations: Int4
Engines: vLLM, Transformers, SGLang
Model ID: hugging-quants/Meta-Llama-3.1-405B-Instruct-AWQ-INT4
Model Hubs: Hugging Face, ModelScope
Execute the following command to launch the model, remember to replace ${quantization}
with your
chosen quantization method from the options listed above:
xinference launch --model-engine ${engine} --model-name llama-3.1-instruct --size-in-billions 405 --model-format awq --quantization ${quantization}